QuestionMay 4, 2025

Suppose a 250. mL flask is filled with 1.4 mol of NO_(3) and 0.60 mol of NO_(2) The following reaction becomes possible: NO_(3)(g)+NO(g)leftharpoons 2NO_(2)(g) The equilibrium constant K for this reaction is 2.27 at the temperature of the flask. Calculate the equilibrium molarity of NO_(2) Round your answer to two decimal places.

Suppose a 250. mL flask is filled with 1.4 mol of NO_(3) and 0.60 mol of NO_(2) The following reaction becomes possible: NO_(3)(g)+NO(g)leftharpoons 2NO_(2)(g) The equilibrium constant K for this reaction is 2.27 at the temperature of the flask. Calculate the equilibrium molarity of NO_(2) Round your answer to two decimal places.
Suppose a 250. mL flask is filled with 1.4 mol of NO_(3) and 0.60 mol of NO_(2) The following reaction becomes possible:
NO_(3)(g)+NO(g)leftharpoons 2NO_(2)(g)
The equilibrium constant K for this reaction is 2.27 at the temperature of the flask.
Calculate the equilibrium molarity of NO_(2) Round your answer to two decimal places.

Solution
4.3(311 votes)

Answer

The equilibrium molarity of NO_2 is 4.88 \, \text{M}. Explanation 1. Write the equilibrium expression The equilibrium constant expression for the reaction is given by: \[ K = \frac NO_2]^2} NO_3][NO \] where [NO_2], [NO_3], and [NO] are the molar concentrations of NO_2, NO_3, and NO at equilibrium, respectively. --- 2. Define initial concentrations The volume of the flask is 250 mL or 0.250 L. Using the formula for molarity (M = \frac{\text{moles}}{\text{volume in liters}}), calculate the initial concentrations: \[ [NO_3]_0 = \frac{1.4 \, \text{mol}}{0.250 \, \text{L}} = 5.6 \, \text{M} \] \[ [NO_2]_0 = \frac{0.60 \, \text{mol}}{0.250 \, \text{L}} = 2.4 \, \text{M} \] Assume that initially, there is no NO present: \[ [NO]_0 = 0 \, \text{M} \] --- 3. Set up changes in concentration using an ICE table Let x represent the change in concentration of NO formed at equilibrium. The changes in concentration for each species are as follows: - [NO_3] decreases by x: [NO_3] = 5.6 - x - [NO] increases by x: [NO] = x - [NO_2] increases by 2x: [NO_2] = 2.4 + 2x At equilibrium, the concentrations are: \[ [NO_3] = 5.6 - x, \quad [NO] = x, \quad [NO_2] = 2.4 + 2x \] --- 4. Substitute into the equilibrium expression Substitute the equilibrium concentrations into the equilibrium constant expression: \[ K = \frac NO_2]^2} NO_3][NO \] \[ 2.27 = \frac{(2.4 + 2x)^2}{(5.6 - x)(x)} \] --- 5. Solve for x Expand and rearrange the equation: \[ 2.27 = \frac{(2.4 + 2x)^2}{(5.6 - x)(x)} \] \[ 2.27 (5.6x - x^2) = (2.4 + 2x)^2 \] Expand both sides: \[ 2.27 (5.6x - x^2) = (2.4)^2 + 2(2.4)(2x) + (2x)^2 \] \[ 2.27 (5.6x - x^2) = 5.76 + 9.6x + 4x^2 \] Distribute 2.27 on the left-hand side: \[ 12.712x - 2.27x^2 = 5.76 + 9.6x + 4x^2 \] Rearrange all terms to one side: \[ 0 = 5.76 - 3.112x + 6.27x^2 \] --- 6. Solve the quadratic equation Use the quadratic formula: \[ ax^2 + bx + c = 0 \quad \Rightarrow \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, a = 6.27, b = -3.112, and c = -5.76. Substituting these values: \[ x = \frac{-(-3.112) \pm \sqrt{(-3.112)^2 - 4(6.27)(-5.76)}}{2(6.27)} \] \[ x = \frac{3.112 \pm \sqrt{9.686 + 144.4032}}{12.54} \] \[ x = \frac{3.112 \pm \sqrt{154.0892}}{12.54} \] \[ x = \frac{3.112 \pm 12.41}{12.54} \] Solve for the two possible values of x: \[ x = \frac{3.112 + 12.41}{12.54} = \frac{15.522}{12.54} \approx 1.24 \] \[ x = \frac{3.112 - 12.41}{12.54} = \frac{-9.298}{12.54} \approx -0.74 \] Since x must be positive, we take x = 1.24. --- 7. Calculate the equilibrium concentration of NO_2 At equilibrium, [NO_2] = 2.4 + 2x. Substituting x = 1.24: \[ [NO_2] = 2.4 + 2(1.24) = 2.4 + 2.48 = 4.88 \, \text{M} \] ---

Explanation

1. Write the equilibrium expression<br /> The equilibrium constant expression for the reaction is given by:<br />\[<br />K = \frac{[NO_2]^2}{[NO_3][NO]}<br />\]<br />where $[NO_2]$, $[NO_3]$, and $[NO]$ are the molar concentrations of $NO_2$, $NO_3$, and $NO$ at equilibrium, respectively.<br /><br />---<br /><br />2. Define initial concentrations<br /> The volume of the flask is 250 mL or 0.250 L. Using the formula for molarity ($M = \frac{\text{moles}}{\text{volume in liters}}$), calculate the initial concentrations:<br />\[<br />[NO_3]_0 = \frac{1.4 \, \text{mol}}{0.250 \, \text{L}} = 5.6 \, \text{M}<br />\]<br />\[<br />[NO_2]_0 = \frac{0.60 \, \text{mol}}{0.250 \, \text{L}} = 2.4 \, \text{M}<br />\]<br />Assume that initially, there is no $NO$ present:<br />\[<br />[NO]_0 = 0 \, \text{M}<br />\]<br /><br />---<br /><br />3. Set up changes in concentration using an ICE table<br /> Let $x$ represent the change in concentration of $NO$ formed at equilibrium. The changes in concentration for each species are as follows:<br />- $[NO_3]$ decreases by $x$: $[NO_3] = 5.6 - x$<br />- $[NO]$ increases by $x$: $[NO] = x$<br />- $[NO_2]$ increases by $2x$: $[NO_2] = 2.4 + 2x$<br /><br />At equilibrium, the concentrations are:<br />\[<br />[NO_3] = 5.6 - x, \quad [NO] = x, \quad [NO_2] = 2.4 + 2x<br />\]<br /><br />---<br /><br />4. Substitute into the equilibrium expression<br /> Substitute the equilibrium concentrations into the equilibrium constant expression:<br />\[<br />K = \frac{[NO_2]^2}{[NO_3][NO]}<br />\]<br />\[<br />2.27 = \frac{(2.4 + 2x)^2}{(5.6 - x)(x)}<br />\]<br /><br />---<br /><br />5. Solve for $x$<br /> Expand and rearrange the equation:<br />\[<br />2.27 = \frac{(2.4 + 2x)^2}{(5.6 - x)(x)}<br />\]<br />\[<br />2.27 (5.6x - x^2) = (2.4 + 2x)^2<br />\]<br />Expand both sides:<br />\[<br />2.27 (5.6x - x^2) = (2.4)^2 + 2(2.4)(2x) + (2x)^2<br />\]<br />\[<br />2.27 (5.6x - x^2) = 5.76 + 9.6x + 4x^2<br />\]<br />Distribute $2.27$ on the left-hand side:<br />\[<br />12.712x - 2.27x^2 = 5.76 + 9.6x + 4x^2<br />\]<br />Rearrange all terms to one side:<br />\[<br />0 = 5.76 - 3.112x + 6.27x^2<br />\]<br /><br />---<br /><br />6. Solve the quadratic equation<br /> Use the quadratic formula:<br />\[<br />ax^2 + bx + c = 0 \quad \Rightarrow \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}<br />\]<br />Here, $a = 6.27$, $b = -3.112$, and $c = -5.76$. Substituting these values:<br />\[<br />x = \frac{-(-3.112) \pm \sqrt{(-3.112)^2 - 4(6.27)(-5.76)}}{2(6.27)}<br />\]<br />\[<br />x = \frac{3.112 \pm \sqrt{9.686 + 144.4032}}{12.54}<br />\]<br />\[<br />x = \frac{3.112 \pm \sqrt{154.0892}}{12.54}<br />\]<br />\[<br />x = \frac{3.112 \pm 12.41}{12.54}<br />\]<br />Solve for the two possible values of $x$:<br />\[<br />x = \frac{3.112 + 12.41}{12.54} = \frac{15.522}{12.54} \approx 1.24<br />\]<br />\[<br />x = \frac{3.112 - 12.41}{12.54} = \frac{-9.298}{12.54} \approx -0.74<br />\]<br />Since $x$ must be positive, we take $x = 1.24$.<br /><br />---<br /><br />7. Calculate the equilibrium concentration of $NO_2$<br /> At equilibrium, $[NO_2] = 2.4 + 2x$. Substituting $x = 1.24$:<br />\[<br />[NO_2] = 2.4 + 2(1.24) = 2.4 + 2.48 = 4.88 \, \text{M}<br />\]<br /><br />---
Click to rate:

Similar Questions