(a) Which of the following is true for most modern constellations (Le ones not defined by the ancients)? They are composed of bright stars. They are located in the northern sky because the north is where most people live. They are located in the northern sky because most technological advances occurred in northern countries. They are located in the southern sky because the southern regions of the world were explored more recently. (b) Which of the following is true for most modern constellations (Le ones not defined by the ancients)? They are composed of dimmer stars, because the brighter stars were already included in constellations a long time ago. They are composed of brighter stars, because all the more recently discovered southern stars are much brighter than the northern ones. They are composed of dim stars we cannot see with a telescope. They are located in the southern sky, because all the stars there are very dim.

Solution4.5(345 votes)
Answer
Explanation
Similar Questions
Which of these statements is most likely correct about a weak nuclear force? (2 points) It binds electrons and protons. It is a repulsive force. It is an attractive force. It binds protons and neutrons.
Which side of the electromagnetic spectrum has shorter waveiengths? $\square $ Which side of the electromagnetic spectrum has higher energy? $\square $ Which side of the electromagnetic spectrum has higher frequencies? $\square $ blue
Outdoors, shadows are longest at what time of day? Midnight Sunrise and sunset Noon 10 a.m.
Which of the following describe the expansion coefficients for a general state? $a_{n}=\langle \psi _{n}\vert \psi \rangle =\int _{-\infty }^{\infty }dx\psi _{n}^{\ast }(x)\psi (x)$ $a_{n}=(\sum _{n}\vert \psi _{n}\rangle )\vert \psi \rangle $ $a_{n}=\langle \psi _{n}\vert \psi \rangle ^{\ast }=\int _{-\infty }^{\infty }dx\psi _{n}(x)\psi ^{\ast }(x)$ $a_{n}=\langle \psi _{n}\vert \psi _{m}\rangle =\int _{-\infty }^{\infty }dx\psi _{n}^{\ast }(x)\psi _{m}(x)$
A certain wave function is given by $\psi (x)=\{ \begin{matrix} A&for-a\leqslant x\leqslant a\\ 0&otherwise\end{matrix} $ Which of the following corresponds to the Fourier transform for this wave function? A sum of spherical harmonics. A sum of sines and cosines. A sum of Hankel functions. The Dirac delta function.
8> What is the random capture theory? Which theory best explains how our solar system was created?
Match each statement to the wave interaction it describes. \begin{array}{|l|l|} \hline\ reflection\ &\ Waves\ bounce\ off\ an\ object.\ \\ \hline\ absorption\ &\ Waves\ are\ taken\ in\ by\ an\ object.\ \\ \hline\ transmission\ &\ Waves\ bend\ while\ passing\ from\ one\ medium\ to\ another.\ \\ \hline\ diffraction\ &\ Waves\ scatter\ through\ an\ opening\ or\ around\ an\ object.\ \\ \hline\ retraction\ &\ Waves\ go\ through\ an\ object.\ \\ \hline \end{array}
A wave function can be expanded in basis states as $\vert \psi \rangle =\sum _{n}a_{n}\vert \psi _{n}\rangle $ What must be true of the expansion coefficients? $\sum _{n}\vert a_{n}\vert ^{2}=1$ They must be real numbers. There is no restrictions on the coefficients. $\sum _{n}a_{n}=1$
Which of the following expressions correspond to the energy-time uncertainty principle? $\Delta E\Delta t\geqslant 2\bar {h}$ $\Delta E\Delta t\geqslant \hat {h}$ $\Delta E\Delta t\geqslant \frac {h}{2}$ $\Delta \omega \Delta t\geqslant \bar {h}$
Consider the following force: A fridge magnet is pulling on a paper clip. According to Newton's third law what other force must be happening? The paper clip is pushing on the fridge magnet. The paper clip is pulling on the fridge magnet.